
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) 
which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 Review
Journal of Epilepsy Research

pISSN 2233-6249 / eISSN 2233-6257

Artificial Intelligence and Computational Approaches for 
Epilepsy
Sora An, PhD1,2, Chaewon Kang, BS1,3, Hyang Woon Lee, MD, PhD1,2,3

Departments of 1Neurology, 2Medical Science, and 3Computational Medicine, Ewha Womans University School of 
Medicine and Ewha Medical Research Institute, Seoul, Korea

Received June 8, 2020
Revised June 18, 2020
Accepted July 14, 2020

Corresponding author: 
Hyang Woon Lee, MD, PhD
Departments of Neurology and Medical 
Science, Ewha Womans University School 
of Medicine and Ewha Medical Research 
Institute, 1071 Anyangcheon-ro, 
Yangcheon-gu, Seoul 07985, Korea
Tel. +82-2-2650-2673
Fax. +82-2-2650-5958
E-mail; leeh@ewha.ac.kr

Studies on treatment of epilepsy have been actively conducted in multiple avenues, but there are limitations 

in improving its efficacy due to between-subject variability in which treatment outcomes vary from patient 

to patient. Accordingly, there is a growing interest in precision medicine that provides accurate diagnosis 

for seizure types and optimal treatment for an individual epilepsy patient. Among these approaches, 

computational studies making this feasible are rapidly progressing in particular and have been widely 

applied in epilepsy. These computational studies are being conducted in two main streams: 1) artificial 

intelligence-based studies implementing computational machines with specific functions, such as 

automatic diagnosis and prognosis prediction for an individual patient, using machine learning techniques 

based on large amounts of data obtained from multiple patients and 2) patient-specific modeling-based 

studies implementing biophysical in-silico platforms to understand pathological mechanisms and derive 

the optimal treatment for each patient by reproducing the brain network dynamics of the particular patient 

per se based on individual patient’s data. These computational approaches are important as it can integrate 

multiple types of data acquired from patients and analysis results into a single platform. If these kinds of 

methods are efficiently operated, it would suggest a novel paradigm for precision medicine. (2020;10:8-17)
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Introduction

Epilepsy is a chronic neurological disease that affects more than 

50 million people worldwide.1 Epilepsy is defined as recurrence of 

unexpected seizures, which results in various ictal symptoms depend-

ing on the brain regions where the seizure is originated and 

propagated.2,3 It seriously degrades the quality of life not only of the 

individual patients, but of their family, which causes major socio-eco-

nomic losses.4-6

For the treatment of epilepsy, medical therapy can be applied by 

priority, in which 60-70% of the patients have responded by single or 

multiple antiepileptic medications.7,8 For the drug-resistant patients, 

however, surgical intervention has been provided as an option, in-

cluding resection that removes the focal area in the brain, which gen-

erates epileptic seizures, as well as disconnection that blocks the 

main neural pathways of seizure propagation.9-13 Although the epi-

lepsy surgery has been accepted as an effective method to control 

the drug-resistant seizures, the postoperative outcomes have been 

largely variable depending on various clinical factors of the individual 

epilepsy patient, including etiology, diagnostic modalities and even 

decision makings by physicians or surgeons’ point of view.9-13 The 

possibility of cognitive impairment after surgery caused by the re-

moval or severance of specific brain areas is another important issue 

to consider.14-17

Recently, neuromodulation therapy using various brain stimulation 

modalities, including deep brain stimulation, vagal nerve stimulation, 

or external responsive neurostimulation, have been attempted to 

control intractable seizures.18-22 Those therapies modulate brain 

functions or pathological states at the entire brain network level, by 

stimulating the specific brain region to induce changes not only in the 

stimulated brain regions but also in distant areas that are connected 

to them through the anatomical or functional brain connectivity. 

While the neuromodulation therapies have been known as novel and 

promising treatment methods, demonstrating seizure reduction in 
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Figure 1. Overview of computational approaches for personalized medicine. Using accumulated large amount of medical data and advanced in-silico 

techniques, the personalized medical platform could be built to provide accurate diagnosis, prognosis prediction and treatment optimization for individual 

epilepsy patients. Currently, these computational studies are mainly divided into two approaches: a machine learning approach that implements a model 

capable of performing a specific function, such as automatic diagnosis, and a biophysical modeling approach that reproduces and simulates the patient’s 

brain network dynamics system itself.

about one-third to one-half of patients,18-22 there are still many ob-

stacles for improving the treatment efficacy by finding the optimal 

stimulation sites or stimulation parameters, or understanding the 

mechanisms behind the treatment.23,24

Although studies for the epilepsy treatment have been actively con-

ducted in multiple avenues, one of the most difficult challenges is the 

between-subject variability of the treatment outcomes. In fact, the 

treatment outcomes have been varied from patient to patient depend-

ing on the patient-specific intrinsic characteristics, including seizure 

types and semiologies, brain lesions, or comorbid neuropsychological 

dysfunctions, extrinsic factors such as the stage in which the treatment 

is first applied, and the treatment conditions.25-28 Therefore, personal-

ized approaches that diagnose each patient’s state accurately and 

choose an optimal treatment method to the individual patient are 

crucial. 

With the advance of high-performance computing technologies 

and the development of numerous mathematical algorithms, compu-

tational studies for clinical application on epilepsy are being actively 

conducted to analyze large amounts of data, from which a proper 

solution can be derived for an individual patient (Fig. 1). These com-

putational studies have significant impacts as it can provide auto-

mated and standardized protocols to support clinical decisions. This 

manuscript provides an overall introduction regarding recent compu-

tational studies on personalized medicine and discuss its future di-

rections for diagnosis and treatment of epilepsy patients.

Machine learning-based approaches

Machine learning, an application of artificial intelligence (AI) tech-

nique, enables a machine to automatically learn something new by 

combining statistics and computer science and thus improve its per-

formance through meaningful data, without explicit instruction.29 

These learning tasks are executed in two main types: supervised ver-

sus unsupervised learnings.29-33 Supervised learning is the approach 

that trains using labeled data, that is, data whose target outputs 

have already been known. It is mainly used for classification or re-

gression purposes and its algorithm includes k-nearest neighbor 

(k-NN), linear/logistic regression, naïve Bayes, random forest, and 

support vector machine (SVM).29-33 On the other hand, unsupervised 

learning is the approach that trains using unlabeled data. It is mainly 

used for clustering or association analysis purposes and its algorithm 

includes k-means, k-medoids, fuzzy C-means, Gaussian mixture, hid-

den Markov model.29-33 Artificial neural network (ANN) is another 

machine learning algorithm that performs the learning task by mim-

icking the brain nervous system, including neuronal dynamics and 

synaptic plasticity, and is widely used in both supervised and un-

supervised learning schemes.29,31,33-36 If there are more than two hid-

den layers constituting ANN, it is specifically called deep neural net-

work (DNN), and using those models to achieve the learning function 

is called deep learning.33 Deep learning approach has a significant 

advantage in automatically discovering discriminative features from 

data and learning them compared to traditional machine learning 

approach, which requires an additional process to extract the fea-

tures manually and apply them as inputs.31,33,36,37 Thus, recently, it 
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has been aggressively used in various applications even if it needs 

higher computational power. For the implementation of deep learn-

ing in addition to general DNN model (i.e., multi-layer perceptron), 

various transformed models, such as convolutional neural network 

(CNN) specialized for analysis of image data and recurrent neural 

network (RNN) specialized for analysis of time-series data, have been 

actively employed.36,37 In this section, we briefly review some of the 

notable studies that have applied machine learning techniques to 

clinical application of epilepsy.

Classification of seizure and epilepsy types

Determining seizure types and epilepsy types of individual patients 

is the first step that should be performed to provide adequate treat-

ment for each patient. Typically, these diagnostic procedures have 

been conducted by clinicians reviewing multiple forms of data ob-

tained from each patient, including symptoms, etiologies, neuro-

images, neurophysiological data such as electroencephalogram 

(EEG), and etc. Since not only are these tasks time-consuming and la-

borious, but also recent studies have indicated that it can often be 

difficult to differentiate the epilepsy types even by experienced clini-

cians,38 the automated models based on the standardized protocols 

become more and more important.

Recent studies have proposed the machine learning approaches 

that automatically execute those diagnostic tasks, especially classi-

fication of seizure types, and have evaluated their performance.39-45 

Mainly, using scalp-EEG recordings labeled with seizure types 

(recorded from multiple patients), some studies have shown that the 

computational model that trained the spatiotemporal features of the 

specific seizure classes were able to classify the seizure types with a 

quite high accuracy.39-43 For the implementation of these models in 

addition to classic machine learning algorithms such as SVM and 

k-NN,39-40 deep learning algorithms such as CNN41-43 have been 

applied. Notably, Liu and colleagues41 have proposed a hybrid bi-

linear model that combines CNN and RNN. In their hybrid model, 

CNN and RNN extracted the spatial and temporal features of seizures 

recorded in scalp EEG, respectively, especially from short-time Fourier 

transform results of segments with a 1 second time window. Then, 

these two types of features were combined into second-order sta-

tistics through bilinear pooling. The proposed model has classified 

the seizure types effectively, with F1-scores of 97.4% and 97.2% in 

two datasets, containing 8 and 4 seizure classes, respectively.

Some other studies have built the computational models that cate-

gorize seizure types or epilepsy types by training using text-based da-

ta containing patients’ symptoms.44,45 Kassahun and colleagues45 

have proposed the models that classifies two epilepsy types, tempo-

ral lobe epilepsy and extra-temporal lobe epilepsy, based on the ictal 

symptoms of each patient, using employing two machine learning 

methods, ontology-based and genetics-based algorithms, and the 

models have achieved 77.8% accuracy.

These machine learning-based classification systems can be used 

to quickly determine disease characteristics of individual patients in a 

standardized manner, and they can be further applied to suggest 

drug medications that are appropriate to each patient based on ac-

cumulated clinical evidences.

Localization of seizure onset zones (SOZ)

Investigating SOZ and propagation zones (PZ) is crucial to make 

accurate diagnosis and treatment plan for each epilepsy patient. 

Especially when surgical intervention is considered, the localization 

of SOZ is essential to determine the surgical resection margin, from 

which the area that can prevent occurrence of seizures by its removal 

and does not cause critical impairment to the normal brain functions 

(i.e., outside of eloquent areas) should be derived. Localization of the 

SOZ has been mainly conducted by measuring electrophysiological 

signals containing spontaneous seizures in an invasive manner, such 

as intracranial EEG (iEEG) or stereotactic EEG (sEEG), and then ana-

lyzing the recorded EEG signals.

Recently, several studies have presented the machine learn-

ing-based methodology to identify SOZ.46-53 In particular, using iEEG 

recordings from patients, Elahian and colleagues47 have built a mod-

el to classify each electrode position into SOZ and non-SOZ. They 

considered the electrode positions within the resected area and out-

side the resected area in the patients who showed seizure-free out-

come as SOZ and non-SOZ, respectively, and trained the model using 

the signal characteristics recorded at the corresponding electrodes of 

two classes. For the training, they extracted certain features from the 

phase locking values (PLVs) of the signals for each channel, especially 

PLV between the phase of amplitude of high gamma activity and 

phase of lower frequency rhythms, and applied them to the logistic 

regression algorithm. They have demonstrated it in patients with 

poor postoperative outcomes, some of the SOZ electrodes predicted 

by the model remained outside the resected area, and the number of 

non-resected SOZ electrodes correlated with surgical outcomes.

In contrast to the studies that localize SOZ using the recording da-
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Figure 2. Machine learning-based computational approach. Many recent studies have focused on implementing the computational predictive models to 

localize SOZs or judge epileptic brain states, such as pre-ictal and ictal onset, by employing traditional machine learning algorithms or deep learning 

algorithms based on scalp EEG and/or iEEG data recorded from epilepsy patients. Compared to the traditional machine learning approach, which consists 

of two step processes of manually extracting the features of the data and training the machine by applying the features as inputs, deep learning approach 

automatically figures out the discriminative features from data and learns them. SOZ, seizure onset zones; EEG, electroencephalogram; iEEG, intracranial 

EEG.

ta containing spontaneous seizures47-49 as described above, other 

studies have attempted to perform the same task using only record-

ing data during inter-ictal period.50-53 Varatharajah and colleagues51 

have developed an analytic framework to make localization of SOZ 

possible, based on multiple biomarkers analyzed from the inter-ictal 

iEEG recordings, including high frequency oscillation, interictal epi-

leptiform discharge, and phase amplitude coupling. The model de-

rived by training the features extracted from the three biomarkers 

through the SVM algorithm was able to effectively identify the SOZ 

using 2 hours of interictal recordings (with an average area under 

ROC curve value of 0.73, when compared to clinically investigated 

SOZ).
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With further validation, these machine learning-based SOZ local-

ization systems can be used to assist decision-making process in de-

termining the surgical site when surgical intervention is considered in 

drug-resistant epilepsy patients (Fig. 2).

Examination of epileptic brain states

Epileptic brain dynamics can be divided into four states: inter-ictal 

(period between seizures, i.e., a normal state of patients), pre-ictal 

(period immediately before the seizure onset), ictal (period during 

seizure), and post-ictal (period immediately after the seizure).54 

Investigating the characteristics of each of these states and the tran-

sitions between them is significant not only for understanding the 

pathological mechanisms of the epilepsy, but also treatment and dis-

ease management. To date, these studies have been conducted with 

two main purposes: seizure detection that promptly identifies the 

seizure onset (time-wise) and seizure prediction that forecast the oc-

currence of seizure in advance by recognizing the characteristics of 

the pre-ictal state different from inter-ictal. Recently, numerous stud-

ies have proposed computational models that can automatically per-

form these tasks using accumulated data sets and machine learning 

algorithms.

Regarding the seizure detection task, many studies have shown 

that the models trained via traditional machine learning algo-

rithms,55-60 especially SVM and k-NN, deep learning algorithms61-65 

using specific features in time and/or frequency domain based on 

scalp EEG, or iEEG recordings can successfully detect seizures with 

multiple types. In particular, Emami and colleagues have proposed a 

CNN-based seizure detection model.61 The model learned the EEG 

(scalp EEG) characteristics in seizure state and non-seizure state au-

tomatically, without additional manual feature extraction proce-

dures, through the supervised learning framework, and was able to 

detect seizure onset at an average positive rate of 74% when the en-

tire time series EEG was sequentially input by 1 second (100% for in-

put by 1 minute). They also have demonstrated that performance of 

seizure detection depends on the similarity of seizure onset pattern 

between training data and test data, i.e., new data with a different 

onset pattern that those of trained data could not be detected well. 

These results indicated that in order to achieve the model that con-

ducts seizure detection with high performance, it is necessary to train 

using a large amount of data including various seizure patterns. 

These computational models with the purpose of seizure onset de-

tection can be used to provide basis for on-demand (closed-loop) 

stimulation therapies or acute drug treatment.

In relation to the seizure prediction task, numerous studies have 

reported that the computational models that learned time and/or fre-

quency domain features observed in pre-ictal state was able to pre-

dict the occurrence of seizures at least several minutes before the 

onset. These models have been mainly trained through supervised 

learning methods, and they were based on a variety of algorithms 

ranging from classic machine learning algorithms such as SVM,66-71 

k-NN,71-73 hidden Markov model,74 and etc., to deep learning algo-

rithms such as CNN,75-78 Long Short-Term Memory70,79 (LSTM, a kind 

of RNN) and their hybrid model,80-82 learning the characteristics of 

the pre-ictal state distinct from inter-ictal. The developed models 

have shown sensitivity of 80-90%, but it should be noted that each 

study had a different prediction time (from 5 minutes before to 1 

hour before the onset). Currently, studies of seizure prediction have 

been conducted primarily in the direction of developing patient-spe-

cific models based on data obtained from individual patients, rather 

than developing a generalized model based on lots of data from mul-

tiple patients. Given that the signal patterns of iEEG or scalp EEG vary 

for each patient, this individualized approach may be more useful for 

clinical applications. Recent studies have implemented seizure pre-

diction models mainly by employing deep learning algorithms.75-82 

Notably, Daoud and Bayoumi80 have developed a model that predicts 

seizures 1 hour before the onset, with a high accuracy of 99.6%, us-

ing long-term scalp EEG. The proposed model employed both CNN 

and RNN (especially bidirectional LSTM) to learn the spatial and tem-

poral features respectively from raw EEG data and introduced a 

semi-supervised learning approach based on the transfer learning 

technique to reduce training time, showing the potential for real-time 

usage. Meanwhile, Cook and colleagues have demonstrated the fea-

sibility of the implanted seizure advisory system in drug-resistant pa-

tients,83 in which they implemented a machine learning-based pa-

tient-specific algorithm by using iEEG signals recorded for at least 1 

month (containing at least 5 leading seizures) at each patient and 

predicted seizure likelihood based on that algorithm, achieving sensi-

tivities ranging from 65% to 100% for each patient. Moreover, 

Kiral-Kornek and colleagues84 have demonstrated feasibility of re-

al-time using wearable devices with low power consumption and 

long-term reliability by implementing the patient-specific seizure pre-

diction system onto neuromorphic chip. These machine learn-

ing-based seizure prediction systems not only help the patients to 

avoid dangerous situations by alerting them of the likelihood of seiz-

ures, but also establish the basis of offering personalized treatment 
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Figure 3. Biophysical modeling-based computational approach. Recent studies based on personalized brain network modeling approach have demonstrated 

the its feasibility, in which the model can reproduce seizure propagation characteristics of each patient and suggest optimal intervention method for each

patient via systematic simulations in the patient-specific environments.

by providing each patient’s information including frequency, dura-

tion, and patterns of seizures to medical institutions (Fig. 2).

Biophysical modeling-based approaches

As another branch of the computational approaches that is dis-

tinct from machine learning-based approach, which create the com-

putational machine to performing specific functions (especially, such 

as classification or clustering) inspired by the working mechanisms of 

the neural network, computational modeling approach that re-

produces the neural network dynamics per se is also actively 

underway.85-88 These neural network modeling studies are mainly 

performed in two types of approaches: bottom-up approach of con-

structing a network based on microscale units including single neu-

rons, synapses and ion channels, and top-down approach of building 

a whole-brain network model based on macroscale brain con-

nectome to understand its functions and mechanisms. In particular, 

since a framework to construct the subject-specific brain network 

model based on individual neuroimaging data has been devel-

oped,89-90 brain modeling studies of the top-down approach to inves-

tigate brain functions and dysfunctions in a personalized manner 

have been rapidly progressing. In these models at whole brain level, 

neural mass model, which is a mathematical model that describes 

the activities of neuronal population rather than the activities of sin-

gle neurons, is mainly used. These neural mass models are located in 

each brain region (or, in each sensor location), generating local dy-

namics, and interact each other by being connected via brain con-

nectivity acquired from the individual brain imaging data. The param-

eters of each neural mass model that determine the local regional 

properties can be set through the analysis of individual functional 

imaging data or through the clinical findings. This personalized mod-

eling approach can be applied to specific diseases, and the devel-

oped model could reproduce the pathological characteristics of each 

patient, such as structural and/or functional alteration of the 

brain,17,91-93 and predict the effects of various therapeutic inter-

ventions via systematic simulations in a patient-specific environment. 

In this section, we briefly review the personalized modeling studies 

toward clinical application of epilepsy.

Patient-specific whole-brain models

To date, studies of personalized brain network modeling have 

been primarily aimed at optimizing surgical intervention strategies by 

employing retrospective approach, in which the actual surgical site of 

each patient is compared with the target site derived from the simu-

lations using the model, and those comparison results are analyzed 

with the surgical outcomes. These patient-specific models have been 

constructed in two main ways: sensor-based and region-based. In 

the sensor-based models, neural mass models are positioned in each 

sensor location, i.e., electrode position of iEEG or scalp EEG, and they 

are coupled by the functional connectivity analyzed from the corre-

sponding data.94-96 In the region-based models, neural mass models 

are located in each brain region and they are coupled by structural 

brain connectivity analyzed from structural brain imaging data, main-

ly T1-weighted and diffusion-weighted images.97-102 The retro-

spective modeling studies have demonstrated that poor surgical out-

comes are frequently observed when target sites identified by simu-

lations are not sufficiently resected during actual surgery,96,99 In other 
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words, they indicate that in-depth analysis considering network dy-

namics based on the data is required rather than interpretation of the 

data itself in order to determine the optimal surgical target.

Jirsa’s group has been intensively conducting personalized brain 

network modeling studies for clinical application, mainly adopting 

region-based modeling scheme. They have proposed a novel meth-

odology to develop individual brain network models, so called the 

Virtual Epileptic Patient (VEP),98 by incorporating multimodal data 

from each epilepsy patient, and have also developed and distributed 

the neuroinformatics platform, The Virtual Brain, to enable the model 

construction.89-90 The VEP model was constructed based on 

Epileptor,103,104 a phenomenological neural mass model replicating 

seizure characteristics, and patient-specific features including brain 

connectivity and magnetic resonance imaging lesions, and fit and va-

lidated using the individual sEEG recordings.98,99 Based on this per-

sonalized modeling approach, Jirsa's group has been conducting 

successive studies in various directions for clinical applications, such 

as inference of the epileptogenicity of the brain regions,102 analysis of 

the seizure propagation characteristics,99-101 and prognostic pre-

diction of the surgical Intervention.100,101

Proix et al.99 have created the personalized brain network models 

for 15 epilepsy patients and simulated individual seizure propagation 

patterns. They also have explained the variability of surgical outcomes 

using the simulated seizure propagation patterns, demonstrating that 

the number of regions, which were identified as the PZ in the simulation 

but not considered in the pre-surgical evaluation (because they were 

not investigated by sEEG), were correlated with poor surgical 

outcomes. Some other researchers have performed simulations to de-

rive the surgical target sites that are minimally invasive and effective 

in suppressing seizures, by applying an in-silico surgical approach to 

the personalized model, i.e., by investigating the degree of seizure 

propagation in pre- and post-surgical conditions.100,101 An et al.101 have 

proposed a strategy to evaluate the safety of the target sites in order 

not to cause impairment of normal brain functions, in which they oper-

ationalized the safety by the concept of preservation of signal trans-

mission capacity of the brain network, by comparing the simulation-in-

duced response network characteristics in pre- and post-surgical 

conditions. These research outcomes have shown the possibility that 

the personalized brain network model could support clinical decision 

in determining the target site for surgery, and Jirsa’s group are currently 

applying this modeling approach to large-scale clinical trials in order 

to evaluate its effectiveness.

These personalized network modeling approaches can be applied 

to investigate the effect of various brain interventions such as neuro-

stimulation in addition to surgical treatment and thus can be utilized 

to understand the therapeutic mechanisms and suggest optimal 

treatment method for each patient (Fig. 3).

Conclusions 

In this paper, we have reviewed the computational studies that 

have been conducted for clinical applications in epilepsy, especially in 

terms of AI-based approach to generate a computational machine 

performing specific functions, and biophysical modeling-based ap-

proach to replicate neural network dynamics per se. Numerous stud-

ies have demonstrated the feasibility of computational approaches 

that could build a novel medical paradigm with a personalized man-

ner, encompassing diagnosis, prognosis and optimization of treat-

ment, by integrating multimodal data and their analytical results into 

a single platform. For successful clinical application of the developed 

computational systems and commercialization through optimization, 

close interdisciplinary cooperation in various fields including medi-

cine, neuroscience, computer science, and engineering is crucial.
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